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The perturbation of nonspherical symmetrical acoustic pressure is added to the equation governing the
spherical stability of sonoluminescing bubbles. The numerical calculations of the shape instability of sonolu-
minescing bubbles with the modified equation are conducted and the results are illustrated accordingly in the
pa-R0 phase diagrams. The calculated results indicate that the stability region vanishes as the amplitude of the
driving acoustic pressurepa arrives at the upper thresholds,1.6 atmd due to the perturbation of a small
nonspherical symmetrical acoustic pressuresabout a few Pad, which is in consistence with the experimental
observations.
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INTRODUCTION

A single oscillating gas bubble can be trapped at the ve-
locity node of an acoustic standing wave in water. The
bubble usually oscillates hundreds of million times uninter-
ruptedly in harmony with the oscillation of the acoustic field
and emits synchronous picoseconds light pulses, which is
known as the single-bubble sonoluminescencesSBSLd f1,2g.
Experiments show that the stable SBSL is restricted in a
narrow parameter area, which is the result of the instabilities
of shapef3,4g, diffusion f5g, and chemical reactionsf6g. With
the consideration of the driving frequency in the range of
20–30 kHz, it has been revealed by experiments conducted a
few years ago that the stable SBSL region has the upper
threshold of the ambient radiusR0 and of the amplitude of
the driving acoustic pressurepa f7g. The threshold ofR0 is
predictable in accordance with the analysis of the shape in-
stability f4g, but the prediction of the threshold ofpa itself is
not easy. Usually, the threshold ofpa is constrainedly ob-
tained by the dint of thermal noisesf4,8g, or by computing
the amplification factor of an initial distortionsit may be due
to the thermal noised of microscopic sizes only in the pri-
mary collapsef9,10g duration. In the present paper, we are
concerned with the attention on dynamical factors instead of
the adsititious thermal noises. Nevertheless, we do not intend
to disavow the existence of the thermal noise effects, but
merely attempt to study another possible reason, which we
maintain is the prime reason that it limits the unbounded
increase ofpa. The basic concept of the present model is to
introduce a very small deformationsnonsphericald of the
driving sound field as a perturbation. We will see that if the
amplitude of this nonspherical symmetrical acoustic pressure
is approximately a few Pas,10−5 atmd, it would not allow
pa to exceed 1.6 atm or so due to Rayleigh-TaylorsRTd in-
stability, which is just the experimentally observed upper
threshold.

THE SHAPE INSTABILITY EQUATION

The shape instability arises out of the deviation from the
spherical symmetry of the bubble, and the theoryf3g is based

on a linear analysis of this deviation. A small distortion of
the spherical interface of the bubble is assumed as follows:

r = Rstd + anYn
msu,fd, s1d

whereRstd is the instantaneous bubble mean radius at timet,
Yn

m a surface harmonic function with rankn, andan the am-
plitude of the surface distortion which is independent of the
indexm in linear region. To determine the radial oscillations
of the bubble, we take the uniform approximation in the
bubble and consider the effects of water vapor and the heat
exchange at the bubble wall, but ignore chemical reactions
f11g. The vapor effects are proven to improve the results of
the calculation of the shape instability to some extentf12g.
The formulas calculating the bubble radius are exactly the
same as in Ref.f11g and we shall not repeat them here. Once
the mean bubble radius is determined, the distortionan can
be calculated by the following formulas where a bubble
boundary layer type approximationsBLA d is employedf4g:

än + Bnȧn − Anan = 0, s2d

with

Bn = 3
Ṙ

R
− 2sn + 2dFsn − 1dsn + 1d −

nsn + 2d
1 + 2d/R

G h

rlR
2 , s3d

An =
sn − 1d

R
FR̈− sn + 1dsn + 2d

s

rlR
2 − 2sn + 2dSn + 1

−
n

1 + 2d/R
D hṘ

rlR
2G , s4d

whererl, h, ands are the liquid density, viscosity, and sur-
face tension coefficient, respectively, andd the boundary
layer thickness, simply defined asf4,13g

d = minSÎ h

rlv
,

R

2n
D , s5d

wherev is the frequency of the driving sound field. The full
numerical simulation considering viscous nonlocal effects
f14g revealed that the results by Eq.s5d underestimated the
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threshold ofR0 at pa.1 atm. For this reason, we simply
diminish the estimated value ofd by redefining it in the
following formula:

d = minSkÎ h

rlv
,

R

2n
D , s6d

where 0,k,1 for pa.1 atm, which can raise the threshold
of R0 and improve the accuracy of the BLA to some extent.

The calculation determining parametric instabilitysPId by
Eqs. s2d–s5d or s6d shows that the initial small distortion
san,10 nmd may be amplified to infinity or vanished in sev-
eral or several decades of periods, the dividing line in the
pa-R0 phase diagrams is just the PI line. Within the calcula-
tion, there is no single phase point where a distortion with a
finite value can be stably kept on, i.e., the theory of the shape
instability on the basis of Eqs.s2d–s5d or s6d does not allow
the existence of the stable nonspherical oscillating bubble.
However, nonspherical stable sonoluminescing bubbles are
experimentally observedf15,16g, which requires the im-
provement in terms of the theory of the shape instability. By
reexamining Eq.s2d, one can find that the equation is derived
under the assumption that the driving sound field is spatially
uniform at the location of the bubble where the driving
acoustic pressure ispsstd=−pa sinsvtd. In accordance with
the symmetric analysis, whenpa is not too large, it is appar-
ent that a nonspherical bubble cannot survive for long under
the uniform acoustic drive. It is natural, therefore, to intro-
duce a small nonspherical symmetrical acoustic pressure,
viz. the distortion of the driving acoustic pressure, and the
total driving acoustic pressure is then corrected as the fol-
lowing formula:

psstd = − spa + dpnYn
mdsinsvtd. s7d

With the correction stated in the formula above, we can re-
derive Eq.s2d in the same way as in Refs.f3,4g. After ne-
glecting the terms of 1/cl, cl is sound speed in the liquid, we
simply have the following formula:

än + Bnȧn − Anan = sn + 1d
dpn

rlR
sinsvtd. s8d

In the present model, Eqs.s8d, s3d, ands4d, ands5d or s6d, are
employed to determine the shape instability of the bubbles,
where only quadruple distortion, viz.,n=2, is considered.

It is worthy of mentioning that if one considers the liquid
compressibility and retains the first order terms of 1/cl in Eq.
s8d, the calculated threshold ofR0 at pa.1.3 atm is much
lower than the values measured experimentally, regardless of
whether the sound field has a small deformation or not. That
is to say, the first order approximation of 1/cl in Eq. s8d is
worse than the zeroth.

NUMERICALLY CALCULATED RESULTS

First we consider the experimental data published in Ref.
f7g. In the case of Ref.f7g, we first calculate the shape insta-
bility by neglecting the distortion of the driving acoustic
pressure, that isdp2=0, and compare the results with the
different d defined by Eqs.s5d ands6d. Here thek in Eq. s6d
is simply chosen as

k = 51, pa , 1.1 atm

s1.4 −pad/0.3, 1.1 atmø pa ø 1.3 atm

1/3, pa . 1.3 atm.
6 s9d

Figure 1 shows PI lines with BLA forn=2, where one can
see thed defined by Eqs.s6d and s9d makes the instability
line higher in thepa-R0 phase diagram, which fits with the
experimental data much better.

In order to interpret the threshold ofpa, as is argued
above, we have to take into account the distortion of the
driving acoustic pressure, viz.,dp2Þ0 in Eq.s8d for n=2. In
the case ofdp2Þ0, the lines of the shape instability are
determined by RT instability instead of PI. The criterion of
the RT instability used to be expressed as the following for-
mula:

max
t,f0,Ns2p/vdg

Uan

R
U ù 1, s10d

whereN is the large number. Figure 2 illustrates the results
of dp2=5310−6pa and 2310−6pa, where we clearly see the
threshold ofpa determined by Eq.s10d.

Apparently, the largerdp2 corresponds to the smaller
threshold ofpa. This is natural because if the driving sound
field at the location of the bubble is less deformed, the larger
value of the driving acoustic pressure might be reached at the
stable sonoluminescing bubble.

Next we verify the validity of our model through compar-
ing the calculated results to more experimental data available
f16–18g. The case shown in Fig. 3 represents an argon
bubble driven by the sound field with 32.8 kHz in water at
293 K and an ambient pressure of 1 atm. The experimental
data of the critical points of those stable and unstable

FIG. 1. Calculated PI lines with differentd defined by Eq.s5d
sdotted lined and by Eqs.s6d and s9d ssolid lined, respectively. In
both cases,dp2=0 in Eq. s8d, the ambient temperature is 21.7 °C
and the frequency of the driving sound field is 20.6 kHz. The ex-
perimental datashollow squaresd are digitalized from Ref.f7g.
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bubbles inpa-R0 parametric space are digitalized from Ref.
f17g. In the calculation, we taken=2, dp2=1.1310−5pa, and
d defined by Eq.s6d but

k = 51, pa , 1.0 atm

3s3.4/3 −pad/0.4; 1.0 atmø pa ø 1.1 atm

1/4, pa . 1.1 atm.
6

s11d

We see the calculated RT instability threshold agrees with the
experimental data very well. Figure 4 shows the experimen-
tal data from Ref.f18g and the corresponding calculated RT

instability threshold withn=2, dp2=3310−6pa, and d de-
fined by Eqs.s6d ands9d. We see the calculated threshold of
pa is approximately coincident with the observed data.

Lastly we consider the oscillation of the stable nonspheri-
cal bubbles. Some period-doubling phenomena from experi-
mental observation in SBSL are attributed to the stable
spherical symmetry breaking of the bubblesf15,16g. In gen-
eral, for dp2Þ0, there are regions in thepa-R0 phase dia-
gram where the stable nonspherical bubbles are allowed to
exist. That is to say, after vibration for a long period, the
distortionan of a bubble in some regions gradually tends to
be a finite value. In Fig. 5, the calculated contour lines with
n=2, dp2=4310−6pa, andd defined by Eq.s5d correspond
to maxt,f0,Ns2p/vdguan/Ru=1, the RT instability threshold line,
and maxt→`uan/Ru=0.5,0.9 for maxt,f0,Ns2p/vdguan/Ru,1, re-
spectively. In addition, there are some areas in the phase
diagram corresponding to the stable nonspherical bubbles,
but they are hard to detect experimentally. The reason is that
the maximum value ofuan/Ru during one period appears a
few microseconds after the bubble’s rebound from its mini-
mum radius. The value ofuan/Ru of the bubble at its mini-
mum radius is very small, see Fig. 6. That is to say, for most
of the time in one period, including the time interval of the
bubble’s flash, the bubble is in a spherical symmetry, even if
the maximum value ofuan/Ru is 0.9. The period-doubling
phenomenon implies the detectable distortion of the bubble
at the moment of the bubble’s flashingf16g. The present
model is based on a linear analysis of a small distortion;
therefore, it cannot cover this phenomenon, which implies
that the period-doubling phenomena may contain some non-
linear effects.

CONCLUSION

A small distortion in the driving sound field is introduced
to interpret the threshold of the driving acoustic pressurepa

FIG. 2. Calculated RT instability lines withd defined by Eqs.s6d
ands9d. dp2=2310−6pa, 5310−6pa correspond to the solid and the
dashed lines, respectively. The other parameters are the same as
those used in Fig. 1. The experimental datashollow squaresd are
digitalized from Ref.f7g.

FIG. 3. Calculated RT instability line withd defined by Eqs.s6d
ands11d. dp2=1.1310−5pa, the ambient temperature is 20 °C, and
the frequency of the driving sound field is 32.8 kHz. The experi-
mental data of the critical phase points of stable and unstable
bubblesshollow squaresd are digitalized from Ref.f17g.

FIG. 4. Calculated RT instability line withd defined by Eqs.s6d
and s9d. dp2=3310−6pa, the ambient temperature is 23.5 °C, and
the frequency of the driving sound field is 23.354 kHz. The experi-
mental datashollow squares with error bard are digitalized from
Ref. f18g.
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of SBSL. The correction caused by the distortion of the driv-
ing acoustic pressure is added to the equation which deter-
mines the shape instability of the bubbles. Experimental data
from several experiments are well interpreted by the present

model and the assumed magnitude of the distortion of the
driving acoustic pressure is only about a few Pa. The present
model belongs to linear approximation category and thus, it
is hard to interpret the period-doubling phenomena.
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FIG. 5. Calculated curves correspond to maxt→`uan/Ru=0.5
sdotted lined, 0.9 sdashed lined, and 1.0ssolid lined, respectively,
with d defined by Eq.s5d, dp2=4310−6pa, an ambient temperature
of 9 °C, and a frequency of the driving sound field 22.165 kHz.
The dashed-dotted line is the calculated diffusive equilibrium curve.
The experimental datashollow squares with error barsd are digi-
talized from Ref.f16g.

FIG. 6. Calculated bubble radiusRstd sdashed lined and therela-
tive distortionan/R ssolid lined vs time in the twentieth period of
sound field corresponding to pointa in Fig. 5.
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