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Instability of sonoluminescing bubbles under a nonspherical symmetrical acoustic-pressure
perturbation
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The perturbation of nonspherical symmetrical acoustic pressure is added to the equation governing the
spherical stability of sonoluminescing bubbles. The numerical calculations of the shape instability of sonolu-
minescing bubbles with the modified equation are conducted and the results are illustrated accordingly in the
pa-Ro phase diagrams. The calculated results indicate that the stability region vanishes as the amplitude of the
driving acoustic pressurp, arrives at the upper threshold-1.6 atn) due to the perturbation of a small
nonspherical symmetrical acoustic press(aieout a few Pg which is in consistence with the experimental

observations.
DOI: 10.1103/PhysReVvE.71.026310 PACS nuni®er78.60.Mq, 47.20.Gv
INTRODUCTION on a linear analysis of this deviation. A small distortion of

A single oscillating gas bubble can be trapped at the veEhe spherical interface of the bubble is assumed as follows:

locity node of an acoustic standing wave in water. The r=R(t) +a,Yy(6,¢), (1)

bubble usually oscillates hundreds of million times uninter- hereR(t) is the instant bubbl di tii
ruptedly in harmony with the oscillation of the acoustic field VN€"® (t) is the instantaneous bubble mean radius at time
a surface harmonic function with ramk anda, the am-

and emits synchronous picoseconds light pulses, which igr] k X A

known as the single-bubble sonoluminescet&8SL) [1,2]. plltude qf the surfac_e distortion WhICh is mde_pendent o_f the

Experiments show that the stable SBSL is restricted in dndexmin linear region. To determme the radllal o_scnlz_atlons

narrow parameter area, which is the result of the instabilitie® the bubble, we take the uniform approximation in the

of shapd 3,4], diffusion[5], and chemical reactiori§]. With bubble and consider the effects of_ water vapor and the 'heat

the consideration of the driving frequency in the range oféxchange at the bubble wall, but ignore chemical reactions

20-30 kHz, it has been revealed by experiments conductedldL- The vapor effects are proven to improve the results of

few years ago that the stable SBSL region has the uppdp€ calculation of the shape instability to some ex{er.

threshold of the ambient radit®, and of the amplitude of The form.ulas calculating the bubble radius are exactly the

the driving acoustic pressugg, [7]. The threshold oR, is ~ Sameasin Refl1] anq we shall not repeat the_m hgre. Once

predictable in accordance with the analysis of the shape i€ Méan bubble radius is determined, the distorédpican

stability [4], but the prediction of the threshold pf itselfis P& calculated by the following formulas where a bubble

not easy. Usually, the threshold of is constrainedly ob- Poundary layer type approximatidBLA) is employed 4]:

tained by the dint of thermal nois¢4,8], or by computing ,+Ba,—Aa,=0, 2)

the amplification factor of an initial distortiofit may be due )

to the thermal noiseof microscopic sizes only in the pri- With

mary collaps€9,10] duration. In the present paper, we are R

concerned with the attention on dynamical factors instead of B =3—-2(n+ 2)[(n —1)(n+1) -

the adsititious thermal noises. Nevertheless, we do not intend R

to disavow the existence of the thermal noise effects, but

merely attempt to study another possible reason, which we (n-1)] - o

maintain is the prime reason that it limits the unbounded ~An=—"p— | R=(N+1(n+2)—7-2n+ 2)<”+ 1

increase ofp,. The basic concept of the present model is to P

introduce a very small deformatiotnonspherical of the n ,7|'Q

driving sound field as a perturbation. We will see that if the T1+29R 25/R)_R2 '
. . . . . Pl

amplitude of this nonspherical symmetrical acoustic pressure

is approximately a few P&~107° atm), it would not allow  wherep,, %, ando are the liquid density, viscosity, and sur-

p, to exceed 1.6 atm or so due to Rayleigh-Tayl&n) in- face tension coefficient, respectively, addthe boundary

stability, which is just the experimentally observed upperlayer thickness, simply defined §4,13]

threshold. [ R
o= min( l—) (5)
pw 2N

THE SHAPE INSTABILITY EQUATION

nin+2) ] 7 3

1+25R | pR%’

(4)

wherew is the frequency of the driving sound field. The full
The shape instability arises out of the deviation from thenumerical simulation considering viscous nonlocal effects
spherical symmetry of the bubble, and the thd@l}is based [14] revealed that the results by E) underestimated the
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threshold ofR; at p,>1 atm. For this reason, we simply =
diminish the estimated value af by redefining it in the 14f
following formula:

L lB 12F
5—m|n<k\/plw,2n), (6)

where 0<k<1 for p,>1 atm, which can raise the threshold &
of Ry and improve the accuracy of the BLA to some extent. =,
The calculation determining parametric instabiliBl) by o 8F
Egs. (2)«5) or (6) shows that the initial small distortion
(a,~ 10 nm may be amplified to infinity or vanished in sev- 6
eral or several decades of periods, the dividing line in the
p.-Ro phase diagrams is just the Pl line. Within the calcula- at
tion, there is no single phase point where a distortion with a
finite value can be stably kept on, i.e., the theory of the shape : : . . .
instability on the basis of Eq$2)—(5) or (6) does not allow 08 1 12 14 16 1.8
the existence of the stable nonspherical oscillating bubble. 10°p, (Pa)
However, nonspherical stable sonoluminescing bubbles are
experimentally observedl15,16, which requires the im- FIG. 1. Calculated PI lines with different defined by Eq(5)
provement in terms of the theory of the shape instability. By(dotted ling and by Egs.(6) and (9) (solid line), respectively. In
reexamining Eq(2), one can find that the equation is derived both casesgp,=0 in Eq.(8), the ambient temperature is 21.7 °C
under the assumption that the driving sound field is spatiall@nd the frequency of the driving sound field is 20.6 kHz. The ex-
uniform at the location of the bubble where the driving Perimental datdhollow squarepare digitalized from Ref{7].
acoustic pressure ipy(t)=-p, sin(wt). In accordance with

the symmetric analysis, whegy, is not too large, it is appar- 1, p.<1.1 atm

ent that a nonspherlcal _bubble_ cannot survive for Iong_under k=1(1.4-p,)/0.3, 1.1 atmsp,<1.3atm 9)
the uniform acoustic drive. It is natural, therefore, to intro-

duce a small nonspherical symmetrical acoustic pressure, 173, Pa> 1.3 atm.

viz. the distortion of the driving acoustic pressure, and the _ _
total driving acoustic pressure is then corrected as the folFigure 1 shows Pl lines with BLA fon=2, where one can

lowing formula: see thed defined by Eqgs(6) and (9) makes the instability
) line higher in thep,-R, phase diagram, which fits with the
Ps(t) = = (Pa+ SppYp)sin(wt). (7) experimental data much better.

With the correction stated in the formula above, we can re- In order to interpret the threshold qf, as is argued
derive Eq.(2) in the same way as in Reff3,4]. After ne- above, we have to take into account the distortion of the

glecting the terms of 1o}, ¢; is sound speed in the liquid, we driving acoustic pressure, vizip, # 0 in Eq.(8) for n=2. In
simply have the following formula: the case ofép,+#0, the lines of the shape instability are
determined by RT instability instead of PIl. The criterion of

4 +Ba —Aa =(n+ 1)% sin(wt). ®) the RT instability used to be expressed as the following for-
pR mula:
In the present model, Eq8), (3), and(4), and(5) or (6), are
employed to determine the shape instability of the bubbles, max %‘ =1, (10)
where only quadruple distortion, vim=2, is considered. tc[oN@emlw)]| R

It is worthy of mentioning that if one considers the liquid
compressibility and retains the first order terms of;id Eq.  whereN is the large number. Figure 2 illustrates the results
(8), the calculated threshold &%, at p,>1.3 atm is much  of §p,=5x% 10%p, and 2x 10°%p,, where we clearly see the
lower than the values measured experimentally, regardless @freshold ofp, determined by Eq(10).
whether the sound field has a small deformation or not. That Apparently, the largersp, corresponds to the smaller
is to say, the first order approximation ofdin Eq. (8) is  threshold ofp,. This is natural because if the driving sound
worse than the zeroth. field at the location of the bubble is less deformed, the larger
value of the driving acoustic pressure might be reached at the
stable sonoluminescing bubble.

First we consider the experimental data published in Ref. Next we verify the validity of our model through compar-
[7]. In the case of Ref.7], we first calculate the shape insta- ing the calculated results to more experimental data available
bility by neglecting the distortion of the driving acoustic [16—18. The case shown in Fig. 3 represents an argon
pressure, that isp,=0, and compare the results with the bubble driven by the sound field with 32.8 kHz in water at
different § defined by Eqs(5) and(6). Here thek in Eqg. (6) 293 K and an ambient pressure of 1 atm. The experimental
is simply chosen as data of the critical points of those stable and unstable

NUMERICALLY CALCULATED RESULTS

026310-2



INSTABILITY OF SONOLUMINESCING BUBBLES..

14t
12t
10f
E
o 8f
6F
4.
038 1 1.2 1.4 16 1.8
10° p,(Pa)

FIG. 2. Calculated RT instability lines withdefined by Eqs(6)
and(9). 6p,=2x 107%p,, 5x 107%p, correspond to the solid and the
dashed lines, respectively. The other parameters are the same
those used in Fig. 1. The experimental détallow squares are
digitalized from Ref[7].

bubbles inp,-R, parametric space are digitalized from Ref.
[17]. In the calculation, we take=2, 5p,=1.1X 10"°p,, and
S defined by Eq(6) but

1, p, < 1.0 atm
k=193(3.4/3-p,)/0.4; 1.0 atm=p,=<1.1 atm
1/4, p,> 1.1 atm.

(11

We see the calculated RT instability threshold agrees with th
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asFIG. 4. Calculated RT instability line witl¥ defined by Eqs(6)
and(9). dp,=3x 10%p,, the ambient temperature is 23.5 °C, and
the frequency of the driving sound field is 23.354 kHz. The experi-
mental data(hollow squares with error bprare digitalized from
Ref.[18].

instability threshold withn=2, ép,=3x 10%p,, and & de-
fined by Egs(6) and(9). We see the calculated threshold of
p. is approximately coincident with the observed data.
Lastly we consider the oscillation of the stable nonspheri-
cal bubbles. Some period-doubling phenomena from experi-
mental observation in SBSL are attributed to the stable
spherical symmetry breaking of the bubbjé$,16. In gen-
eral, for op,# 0, there are regions in the,-R, phase dia-
gram where the stable nonspherical bubbles are allowed to

experimental data very well. Figure 4 shows the experimenexist. That is to say, after vibration for a long period, the

tal data from Ref[18] and the corresponding calculated RT
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FIG. 3. Calculated RT instability line wit@ defined by Eqs(6)

and(11). 8p,=1.1x 10 %p,, the ambient temperature is 20 °C, and
the frequency of the driving sound field is 32.8 kHz. The experi-

distortiona,, of a bubble in some regions gradually tends to
be a finite value. In Fig. 5, the calculated contour lines with
n=2, dp,=4x 10%p,, and § defined by Eq(5) correspond

t0 MaXc[on(2iw)@n/ RI=1, the RT instability threshold line,
and max_...|a,/R/=0.5,0.9 for may-o n(2mrw)jlan/ R <1, re-
spectively. In addition, there are some areas in the phase
diagram corresponding to the stable nonspherical bubbles,
but they are hard to detect experimentally. The reason is that
the maximum value ofa,/R| during one period appears a
few microseconds after the bubble’s rebound from its mini-
mum radius. The value df,/R| of the bubble at its mini-
mum radius is very small, see Fig. 6. That is to say, for most
of the time in one period, including the time interval of the
bubble’s flash, the bubble is in a spherical symmetry, even if
the maximum value ofa,/R| is 0.9. The period-doubling
phenomenon implies the detectable distortion of the bubble
at the moment of the bubble’s flashin@6]. The present
model is based on a linear analysis of a small distortion;
therefore, it cannot cover this phenomenon, which implies
that the period-doubling phenomena may contain some non-
linear effects.

CONCLUSION

mental data of the critical phase points of stable and unstable A small distortion in the driving sound field is introduced

bubbles(hollow squarepare digitalized from Ref{17].

to interpret the threshold of the driving acoustic presqyre
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FIG. 6. Calculated bubble radilt) (dashed lingand therela-
tive distortiona,/R (solid line) vs time in the twentieth period of
FIG. 5. Calculated curves correspond to maxa,/R/=0.5

sound field corresponding to poiatin Fig. 5.
(dotted ling, 0.9 (dashed ling and 1.0(solid line), respectively, . ) )
with & defined by Eq(5), 8p,=4x 10°%p,, an ambient temperature mpdel and thg assumed 'magnltude of the distortion of the
of 9 °C, and a frequency of the driving sound field 22.165 kHz. driving acoustic pressure is only about a few Pa. The present
The dashed-dotted line is the calculated diffusive equilibrium curvemodel belongs to linear approximation category and thus, it
The experimental datéhollow squares with error barsre digi- IS hard to interpret the period-doubling phenomena.
talized from Ref[16].
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